Empirical Likelihood in Count Data Models: The Case of Endogenous Regressors
نویسنده
چکیده
Recent advances in the econometric modelling of count data have often been based on the generalized method of moments (GMM). However, the two-step GMM procedure may perform poorly in small samples, and several empirical likelihood-based estimators have been suggested alternatively. In this paper I discuss empirical likelihood (EL) estimation for count data models with endogenous regressors. I carefully distinguish between parametric and semi-parametric methods and analyze the properties of the EL estimator by means of a Monte Carlo experiment. I apply the proposed method to estimate the effect of women’s schooling on fertility.
منابع مشابه
Count Data Models with Correlated Unobserved Heterogeneity
As previously argued, the correlation between included and omitted regressors generally causes inconsistency of standard estimators for count data models. Non-linear instrumental variables estimation of an exponential model under conditional moment restrictions is one of the proposed remedies. This approach is extended here by fully exploiting the model assumptions and thereby improving efficie...
متن کاملVector Autoregressive Model Selection: Gross Domestic Product and Europe Oil Prices Data Modelling
We consider the problem of model selection in vector autoregressive model with Normal innovation. Tests such as Vuong's and Cox's tests are provided for order and model selection, i.e. for selecting the order and a suitable subset of regressors, in vector autoregressive model. We propose a test as a modified log-likelihood ratio test for selecting subsets of regressors. The Europe oil prices, ...
متن کاملInflation and Inflation Uncertainty in Iran: An Application of GARCH-in-Mean Model with FIML Method of Estimation
This paper investigates the relationship between inflation and inflation uncertainty for the period of 1990-2009 by using monthly data in the Iranian economy. The results of a two-step procedure such as Granger causality test which uses generated variables from the first stage as regressors in the second stage, suggests a positive relation between the mean and the variance of inflation. However...
متن کاملPanel Growth Regressions with General Predetermined Variables: Likelihood-Based Estimation and Bayesian Averaging
In this paper I estimate empirical growth models simultaneously considering endogenous regressors and model uncertainty. In order to apply Bayesian methods such as Bayesian Model Averaging (BMA) to dynamic panel data models with predetermined or endogenous variables and fixed effects, I propose a likelihood function for such models. The resulting maximum likelihood estimator can be interpreted ...
متن کاملFitting of Count Time Series Models on the Number of Patients Referred to Addiction Treatment Centers in Semnan County
Abstract. Count data over time are observed in many application areas. Many researchers use time series patterns to analyze this data. In this paper, the poisson count time series linear models and negative binomials on this type of data with the explanatory variables are studied. The Likelihood analysis and the evaluation of count time series model based on generalized linear models are pres...
متن کامل